
1

Chapter 20

Testing Web Applications

Software Engineering: A Practitioner’s Approach, 6th edition
by Roger S. Pressman

2

Testing Quality Dimensions-I

 Content is evaluated at both a syntactic and semantic level.
 syntactic level—spelling, punctuation and grammar are assessed

for text-based documents.

 semantic level—correctness (of information presented),
consistency (across the entire content object and related objects)
and lack of ambiguity are all assessed.

 Function is tested for correctness, instability, and general
conformance to appropriate implementation standards
(e.g.,Java or XML language standards).

 Structure is assessed to ensure that it
 properly delivers WebApp content and function

 is extensible

 can be supported as new content or functionality is added.

3

Testing Quality Dimensions-II

 Usability is tested to ensure that each category of user
 is supported by the interface

 can learn and apply all required navigation syntax and semantics

 Navigability is tested to ensure that
 all navigation syntax and semantics are exercised to uncover any

navigation errors (e.g., dead links, improper links, erroneous links).

 Performance is tested under a variety of operating conditions,
configurations, and loading to ensure that
 the system is responsive to user interaction

 the system handles extreme loading without unacceptable
operational degradation

4

Testing Quality Dimensions-III

 Compatibility is tested by executing the WebApp in a variety of
different host configurations on both the client and server sides.
 The intent is to find errors that are specific to a unique host

configuration.

 Interoperability is tested to ensure that the WebApp properly
interfaces with other applications and/or databases.

 Security is tested by assessing potential vulnerabilities and
attempting to exploit each.
 Any successful penetration attempt is deemed a security failure.

5

WebApp Testing Strategy-I

 The content model for the WebApp is reviewed to
uncover errors.

 The interface model is reviewed to ensure that all
use-cases can be accommodated.

 The design model for the WebApp is reviewed to
uncover navigation errors.

 The user interface is tested to uncover errors in
presentation and/or navigation mechanics.

 Selected functional components are unit tested.

6

WebApp Testing Strategy-II

 Navigation throughout the architecture is tested.

 The WebApp is implemented in a variety of different
environmental configurations and is tested for compatibility with
each configuration.

 Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.

 Performance tests are conducted.

 The WebApp is tested by a controlled and monitored population
of end-users
 the results of their interaction with the system are evaluated for

content and navigation errors, usability concerns, compatibility
concerns, and WebApp reliability and performance.

7

The Testing Process

Interface

design

Aesthet ic design

Content design

Navigat ion design

Architecture design

Component design

user

technology

Cont ent

Test ing

Int erf ace

Test ing

Component

Test ing

Navigat ion

Test ing

Perf o rmance

Test ing

Conf igurat ion

Test ing

Securit y

Test ing

8

Content Testing

 Content testing has three important objectives:

 to uncover syntactic errors (e.g., typos, grammar

mistakes) in text-based documents, graphical

representations, and other media

 to uncover semantic errors (i.e., errors in the

accuracy or completeness of information) in any

content object presented as navigation occurs,

and

 to find errors in the organization or structure of

content that is presented to the end-user.

9

Assessing Content Semantics

 Is the information factually accurate?

 Is the information concise and to the point?

 Is the layout of the content object easy for the user to understand?

 Can information embedded within a content object be found easily?

 Have proper references been provided for all information derived from other
sources?

 Is the information presented consistent internally and consistent with information
presented in other content objects?

 Is the content offensive, misleading, or does it open the door to litigation?

 Does the content infringe on existing copyrights or trademarks?

 Does the content contain internal links that supplement existing content? Are the
links correct?

 Does the aesthetic style of the content conflict with the aesthetic style of the
interface?

10

Database Testing
c lient layer - user int erface

server layer - WebApp

server layer - dat a t ransform at ion

dat abase layer - dat a access

server layer - dat a m anagem ent

dat abase

HTML script s

user dat a SQL

user dat a

SQLraw dat a

Tests are defined for
each layer

11

User Interface Testing

 Interface features are tested to ensure that design rules,
aesthetics, and related visual content is available for the user
without error.

 Individual interface mechanisms are tested in a manner that is
analogous to unit testing.

 Each interface mechanism is tested within the context of a use-
case or NSU (Chapter 19) for a specific user category.

 The complete interface is tested against selected use-cases and
NSUs to uncover errors in the semantics of the interface.

 The interface is tested within a variety of environments (e.g.,
browsers) to ensure that it will be compatible.

12

Testing Interface Mechanisms-I

 Links—navigation mechanisms that link the user to some other content
object or function.

 Forms—a structured document containing blank fields that are filled in
by the user. The data contained in the fields are used as input to one or
more WebApp functions.

 Client-side scripting—a list of programmed commands in a scripting
language (e.g., Javascript) that handle information input via forms or
other user interactions

 Dynamic HTML—leads to content objects that are manipulated on the
client side using scripting or cascading style sheets (CSS).

 Client-side pop-up windows—small windows that pop-up without user
interaction. These windows can be content-oriented and may require
some form of user interaction.

13

Testing Interface Mechanisms-II

 CGI scripts—a common gateway interface (CGI) script implements a
standard method that allows a Web server to interact dynamically with
users (e.g., a WebApp that contains forms may use a CGI script to
process the data contained in the form once it is submitted by the user).

 Streaming content—rather than waiting for a request from the client-
side, content objects are downloaded automatically from the server
side. This approach is sometimes called “push” technology because the
server pushes data to the client.

 Cookies—a block of data sent by the server and stored by a browser as
a consequence of a specific user interaction. The content of the data is
WebApp-specific (e.g., user identification data or a list of items that
have been selected for purchase by the user).

 Application specific interface mechanisms—include one or more
“macro” interface mechanisms such as a shopping cart, credit card
processing, or a shipping cost calculator.

14

Usability Tests

 Design by WebE team … executed by end-users

 Testing sequence …
 Define a set of usability testing categories and identify goals for each.

 Design tests that will enable each goal to be evaluated.

 Select participants who will conduct the tests.

 Instrument participants’ interaction with the WebApp while testing is
conducted.

 Develop a mechanism for assessing the usability of the WebApp

 different levels of abstraction:
 the usability of a specific interface mechanism (e.g., a form) can be

assessed

 the usability of a complete Web page (encompassing interface mechanisms,
data objects and related functions) can be evaluated

 the usability of the complete WebApp can be considered.

15

Compatibility Testing

 Compatibility testing is to define a set of “commonly encountered” client
side computing configurations and their variants

 Create a tree structure identifying
 each computing platform

 typical display devices

 the operating systems supported on the platform

 the browsers available

 likely Internet connection speeds

 similar information.

 Derive a series of compatibility validation tests
 derived from existing interface tests, navigation tests, performance tests,

and security tests.

 intent of these tests is to uncover errors or execution problems that can be
traced to configuration differences.

16

Component-Level Testing

 Focuses on a set of tests that attempt to

uncover errors in WebApp functions

 Conventional black-box and white-box

test case design methods can be used

 Database testing is often an integral

part of the component-testing regime

17

Navigation Testing

 The following navigation mechanisms should be tested:
 Navigation links—these mechanisms include internal links within the WebApp, external

links to other WebApps, and anchors within a specific Web page.

 Redirects—these links come into play when a user requests a non-existent URL or
selects a link whose destination has been removed or whose name has changed.

 Bookmarks—although bookmarks are a browser function, the WebApp should be
tested to ensure that a meaningful page title can be extracted as the bookmark is
created.

 Frames and framesets—tested for correct content, proper layout and sizing, download
performance, and browser compatibility

 Site maps—Each site map entry should be tested to ensure that the link takes the user
to the proper content or functionality.

 Internal search engines—Search engine testing validates the accuracy and
completeness of the search, the error-handling properties of the search engine, and
advanced search features

18

Testing Navigation Semantics-I

 Is the NSU achieved in its entirety without error?

 Is every navigation node (defined for a NSU) reachable within the
context of the navigation paths defined for the NSU?

 If the NSU can be achieved using more than one navigation path, has
every relevant path been tested?

 If guidance is provided by the user interface to assist in navigation, are
directions correct and understandable as navigation proceeds?

 Is there a mechanism (other than the browser ‘back’ arrow) for
returning to the preceding navigation node and to the beginning of the
navigation path.

 Do mechanisms for navigation within a large navigation node (i.e., a
long web page) work properly?

 If a function is to be executed at a node and the user chooses not to
provide input, can the remainder of the NSU be completed?

19

Testing Navigation Semantics-II

 If a function is executed at a node and an error in function
processing occurs, can the NSU be completed?

 Is there a way to discontinue the navigation before all nodes
have been reached, but then return to where the navigation was
discontinued and proceed from there?

 Is every node reachable from the site map? Are node names
meaningful to end-users?

 If a node within an NSU is reached from some external source,
is it possible to process to the next node on the navigation path.
Is it possible to return to the previous node on the navigation
path?

 Does the user understand his location within the content
architecture as the NSU is executed?

20

Configuration Testing

 Server-side
 Is the WebApp fully compatible with the server OS?

 Are system files, directories, and related system data created correctly
when the WebApp is operational?

 Do system security measures (e.g., firewalls or encryption) allow the
WebApp to execute and service users without interference or performance
degradation?

 Has the WebApp been tested with the distributed server configuration (if
one exists) that has been chosen?

 Is the WebApp properly integrated with database software? Is the WebApp
sensitive to different versions of database software?

 Do server-side WebApp scripts execute properly?

 Have system administrator errors been examined for their affect on
WebApp operations?

 If proxy servers are used, have differences in their configuration been
addressed with on-site testing?

21

Configuration Testing

 Client-side
 Hardware—CPU, memory, storage and printing devices

 Operating systems—Linux, Macintosh OS, Microsoft
Windows, a mobile-based OS

 Browser software—Internet Explorer, Mozilla/Netscape,
Opera, Safari, and others

 User interface components—Active X, Java applets and
others

 Plug-ins—QuickTime, RealPlayer, and many others

 Connectivity—cable, DSL, regular modem, T1

 The number of configuration variables must be
reduced to a manageable number

22

Security Testing

 Designed to probe vulnerabilities of the client-side
environment, the network communications that occur
as data are passed from client to server and back
again, and the server-side environment

 On the client-side, vulnerabilities can often be traced
to pre-existing bugs in browsers, e-mail programs, or
communication software.

 On the server-side, vulnerabilities include denial-of-
service attacks and malicious scripts that can be
passed along to the client-side or used to disable
server operations

23

Performance Testing

 Does the server response time degrade to a point where it is noticeable
and unacceptable?

 At what point (in terms of users, transactions or data loading) does
performance become unacceptable?

 What system components are responsible for performance degradation?

 What is the average response time for users under a variety of loading
conditions?

 Does performance degradation have an impact on system security?

 Is WebApp reliability or accuracy affected as the load on the system
grows?

 What happens when loads that are greater than maximum server
capacity are applied?

24

Load Testing

 The intent is to determine how the WebApp and its server-

side environment will respond to various loading

conditions

 N, the number of concurrent users

 T, the number of on-line transactions per unit of time

 D, the data load processed by the server per

transaction

 Overall throughput, P, is computed in the following manner:

 P = N x T x D

25

Stress Testing

 Does the system degrade ‘gently’ or does the server shut down as capacity is
exceeded?

 Does server software generate “server not available” messages? More generally,
are users aware that they cannot reach the server?

 Does the server queue requests for resources and empty the queue once
capacity demands diminish?

 Are transactions lost as capacity is exceeded?

 Is data integrity affected as capacity is exceeded?

 What values of N, T, and D force the server environment to fail? How does
failure manifest itself? Are automated notifications sent to technical support staff
at the server site?

 If the system does fail, how long will it take to come back on-line?

 Are certain WebApp functions (e.g., compute intensive functionality, data
streaming capabilities) discontinued as capacity reaches the 80 or 90 percent
level?

